Field modulation in bilayer graphene band structure
نویسندگان
چکیده
منابع مشابه
Field modulation in bilayer graphene band structure.
Using an external electric field, one can modulate the band gap of Bernal stacked bilayer graphene by breaking the A-[Formula: see text] symmetry. We analyze strain effects on the bilayer graphene using the extended Hückel theory and find that reduced interlayer distance results in higher band gap modulation, as expected. Furthermore, above about 2.5 Å interlayer distance, the band gap is direc...
متن کاملAsymmetry gap in the electronic band structure of bilayer graphene
A tight binding model is used to calculate the band structure of bilayer graphene in the presence of a potential difference between the layers that opens a gap ∆ between the conduction and valence bands. In particular, a self consistent Hartree approximation is used to describe imperfect screening of an external gate, employed primarily to control the density n of electrons on the bilayer, resu...
متن کاملBand structure asymmetry of bilayer graphene revealed by infrared spectroscopy.
We report on infrared spectroscopy of bilayer graphene integrated in gated structures. We observe a significant asymmetry in the optical conductivity upon electrostatic doping of electrons and holes. We show that this finding arises from a marked asymmetry between the valence and conduction bands, which is mainly due to the inequivalence of the two sublattices within the graphene layer and the ...
متن کاملStrained bilayer graphene: Band structure topology and Landau level spectrum
We show that topology of the low-energy band structure in bilayer graphene critically depends on mechanical deformations of the crystal which may easily develop in suspended graphene flakes. We describe the Lifshitz transition that takes place in strained bilayers upon splitting the parabolic bands at intermediate energies into several Dirac cones at the energy scale of a few meV. Then, we show...
متن کاملThe low energy electronic band structure of bilayer graphene
We employ the tight binding model to describe the electronic band structure of bilayer graphene and we explain how the optical absorption coefficient of a bilayer is influenced by the presence and dispersion of the electronic bands, in contrast to the featureless absorption coefficient of monolayer graphene. We show that the effective low energy Hamiltonian is dominated by chiral quasiparticles...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Condensed Matter
سال: 2009
ISSN: 0953-8984,1361-648X
DOI: 10.1088/0953-8984/21/10/102202